## Current Scenario of Clinical Trials of Cell, Gene and RNA

## **Therapies**

(Dr. Archana Kumari Srivastava<sup>1</sup>, Senior Executive; Mr. Vijayanand K<sup>1</sup>, Deputy General Manager; Mr. Sudip Kumar Majumder<sup>1</sup>, Vice President)

<sup>1</sup>Department of Biotechnology, Jodas Expoim Pvt. Ltd

Cell, gene, and RNA therapies have brought a quantum leap in the treatment of diseases such as cancer, genetic disorders, and autoimmune conditions by replacing dysfunctional molecules with correct molecules at the

molecular level. Clinical trials for such therapies need regulatory consultancy, drug development planning, site selection and data management that are usually taken care of by cell and geneaccredited contract research organizations (CROs). Cell and gene therapy trials are more prevalent in oncology, in particular blood cancers, viral infections, and solid tumors followed by infectious diseases, central nervous system (CNS) and cardiovascular diseases.



Constant emergence of new gene therapies as well as refinement of the existing ones changes the global landscape of the cell and gene therapies clinical trials, where the US, China, and Europe are leading in respect of the number of trials conducted. As per Global Data, China showed 15% faster growth in cell and gene therapy clinical trials making the Asia-Pacific region contributes for one-third of the trial activities. As a result, the Asia Pacific region is witnessing 50% faster growth than the rest of the world (ROW). Asia Pacific region leads globally in terms of CAR-T cell gene therapy clinical trials for the time period 2015-2022 since China alone conducted ~60% of all CAR-T trials. Till April 2022, there are 19 approved gene therapies, 17 RNA-approved therapies while 56 non-genetically modified approved cell therapies (Figure 1). Details of the approved location of the clinical trials of gene therapies and RNA therapies drug product are provided in Table No.1 and Table No. 2 respectively, which presents a bird's-eye view of the landscape of the clinical trials of the approved gene and RNA therapies.

| Table No. 1: Approved Gene Therapies till April'2022       |              |                                |                           |                                                                                         |                                      |
|------------------------------------------------------------|--------------|--------------------------------|---------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|
| Location<br>Approved                                       | Product Name | Generic Name                   | First<br>Approval<br>Year | Diseases                                                                                | Innovator<br>Company                 |
| China                                                      | Gendicine    | Recombinant p53 gene           |                           | Head and neck cancer                                                                    | Shenzhen<br>SiBonoGeneTe<br>ch       |
|                                                            | Oncorine     | E1B/E3 deficient<br>adenovirus | 2005                      | Head and neck<br>cancer; nasopharygeal<br>cancer                                        | Shanghai<br>Sunway<br>Biotech        |
|                                                            | Relma-cel    | Relmacabtagene<br>autoleucel   | 2021                      | Diffuse large B-cell<br>Lymphoma                                                        | JW<br>Therapeutics                   |
| China, US, EU,<br>UK, Japan,<br>Canada                     | Yescarta     | Axicabtagene<br>ciloleucel     | 2017                      | Diffuse large B-cell<br>lymphoma; non-<br>Hodgkin's<br>lymphoma; follicular<br>lymphoma | Kite Pharma<br>(Gilead)              |
| Japan                                                      | Collategene  | Beperminogene<br>perplasmid    | 2019                      | Critical limb ischemia                                                                  | AnGes                                |
| Japan                                                      | Delytact     | Teserpaturev                   | 2021                      | Malignant Glioma                                                                        | Daiichi<br>Sankyo                    |
| Japan, US                                                  | Breyanzi     | Lisocabtagene<br>maraleucel    | 2021                      | Diffuse large B-cell<br>lymphoma; follicular<br>lymphoma                                | Celgene<br>(Bristol Myers<br>Squibb) |
| Japan, US,<br>Canada, EU, UK                               | Abecma       | Idecabtagene<br>vicleucel      | 2021                      | Multiple myeloma                                                                        | Bluebird Bio                         |
| Japan, Australia,<br>South Korea,<br>Canada, US, EU,<br>UK | Kymriah      | Tisagenlecleucel-t             | 2017                      | Acute Lymphocytic<br>Leukaemia; Diffuse<br>large B-cell<br>lymphoma                     | Novartis                             |

| Japan, Australia,<br>South Korea,<br>Canada, Brazil,<br>Israel, Taiwan,<br>US, EU, UK | Zolgensma    | Onasemnogene<br>abeparvovec                   | 2019 | Spinal Muscular<br>Atrophy                                  | Novartis                         |
|---------------------------------------------------------------------------------------|--------------|-----------------------------------------------|------|-------------------------------------------------------------|----------------------------------|
| Australia, South<br>Korea, Canada,<br>US, EU, UK                                      | Luxturna     | Voretigene<br>neparvovec                      | 2017 | Leber's congenital<br>amaurosis, retinitis<br>pigmentosa    | Spark<br>Therapeutics<br>(Roche) |
| Philippines                                                                           | Rexin-G      | Mutant cyclin-G1<br>gene                      | 2006 | Solid tumors                                                | Epeius<br>Biotechnologie<br>s    |
| Russian<br>Federation,<br>Ukraine                                                     | Neovasculgen | Vascular<br>endothelial growth<br>factor gene | 2011 | Peripheral vascular<br>disease; limb<br>ischemia            | Human Stem<br>Cells Institute    |
| US, EU, UK,<br>Australia                                                              | Imlygic      | Talimogene<br>laherparepvec                   | 2015 | Melanoma                                                    | Amgen                            |
| US, EU, UK                                                                            | Tecartus     | Brexucabtagene<br>autoleucel                  | 2020 | Mantel cell<br>lymphoma; acute<br>lymphocytic<br>leukaemaia | Kite Pharma<br>(Gilead)          |
| EU, UK                                                                                | Strimvelis   | Autologous<br>CD34+ enriched<br>cells         | 2016 | Adenosine deaminase<br>deficiency                           | Orchard<br>Therapeutics          |
| EU, UK                                                                                | Zynteglo     | Betibeglogene<br>autotemcel                   | 2019 | Transfusion-<br>dependent beta<br>thalassemia               | Bluebird Bio                     |
| EU, UK                                                                                | Libmeldy     | Atidarsagene<br>autotemcel                    | 2020 | Metachromatic<br>Leukodystrophy                             | Orchard<br>Therapeutics          |
| US                                                                                    | Carvykti     | Ciltacabtagene<br>autoleucel                  | 2022 | Multiple myeloma                                            | Legend<br>Biotech                |

| Table 2: List of Approved RNA Therapies till April' 2022     |              |                      |                           |                                                                                               |                          |
|--------------------------------------------------------------|--------------|----------------------|---------------------------|-----------------------------------------------------------------------------------------------|--------------------------|
| Location Approved                                            | Product Name | Generic Name         | First<br>Approval<br>Year | Diseases                                                                                      | Innovator<br>Company     |
| US                                                           | Exondys 51   | Eteplirsen           | 2016                      | Duchenne Muscular<br>Dystrophy,                                                               | Sarepta<br>Therapeutics  |
| US                                                           | Vyondys 53   | Golodirsen           | 2019                      | Duchene Muscular<br>Dystrophy                                                                 | Sarepta<br>Therapeutics  |
| US                                                           | Amondys 45   | Casimersen           | 2021                      | Duchenne Muscular<br>Dystrophy                                                                | Sarepta<br>Therapeutics  |
| US                                                           | Nulibry      | Fosdenopterin        | 2021                      | Molybdenum<br>cofactor deficiency                                                             | Orphatec                 |
| US, Japan                                                    | Viltepso     | Viltolarsen          | 2020                      | Duchenne Muscular<br>Dystrophy                                                                | NS Pharma                |
| US, Mexico,<br>Argentina, South<br>Korea                     | Kynamro      | Mipomersen<br>sodium | 2013                      | Homozygous familial<br>hypercholesterolemia                                                   | Ionis<br>Pharmaceuticals |
| US, Brazil, EU, UK                                           | Oxlumo       | Lumasiran            | 2020                      | Hyperoxaluria                                                                                 | Alnylam                  |
| US, Canada, Brazil,<br>EU, UK                                | Tegsedi      | Inotersen            | 2018                      | Amyloidosis,<br>transthyretin-related<br>hereditary                                           | Ionis<br>Pharmaceuticals |
| US, Australia,<br>Canada, Israel, EU,<br>UK                  | Leqvio       | Inclisiran           | 2020                      | Atherosclerosis;<br>Heterozygous<br>familial<br>hypercholesterolemia,<br>Hypercholesterolemia | Alnylam                  |
| US, Canada, Brazil,<br>Israel, Japan,<br>Switzerland, EU, UK | Givlaari     | Givosiran            | 2020                      | Porphyria                                                                                     | Alnylam                  |

| US, Canada, Brazil,<br>Switzerland, Israel,<br>Taiwan, Turkey,<br>Japan, EU, UK                                                                                                                                                                                                                                                         | Onpattro                    | Patisiran                    | 2018 | Amyloidosis,<br>transthyretin-related<br>hereditary            | Alnylam                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------|----------------------------------------------------------------|------------------------------|
| US, Denmark, Ireland,<br>India, Japan, Mexico,<br>Morocco, Indoesia,<br>Australia, South<br>Korea, UK                                                                                                                                                                                                                                   | Lagevrio                    | Molnupiravir                 | 2021 | Infection,<br>coronavirus, novel<br>coronavirus                | Ridgeback<br>Biotherapeutics |
| US, Canada, Japan,<br>Brazil, Switzerland,<br>Australia, South<br>Korea, China,<br>Argentina, Colombia,<br>Taiwan, Turkey, EU,<br>UK                                                                                                                                                                                                    | Spinraza                    | Nusinersen                   | 2016 | Spial Muscular<br>Atrophy                                      | Ionis<br>Pharmaceuticals     |
| US, Canada, Israel,<br>Switzerland,<br>Australia, South<br>Korea, Singapore,<br>Qatar, Vietnam,<br>Philippines, Thailand,<br>Japan, Brunei,<br>Paraguay, Taiwan,<br>Botswana, India,<br>Indonesia, Saudi<br>Arabia, Mexico,<br>Nigeria, Colombia,<br>EU, UK                                                                             | Moderna Covid-19<br>vaccine | Covid-19 vaccine,<br>Moderna | 2020 | Infection,<br>coronavirus, novel<br>coronavirus<br>prophylaxis | Moderna<br>Therapeutics      |
| US, Bahrain, Israel,<br>Canada, Rwanda,<br>Serbia, UAE, Macao,<br>Mexico, Kuwait,<br>Singapore, Saudi<br>Arabia, Chile,<br>Switzerland,<br>Colombia, Philippines,<br>Australia, Hong Kong,<br>Peru, South Korea,<br>New Zealand, Japan,<br>Brazil, Srilanka,<br>Vietnam, South<br>Africa, Thailand,<br>Oman, Egypt,<br>Malaysia, EU, UK | Comirnaty                   | Tozinameran                  | 2020 | Infection,<br>coronavirus, novel<br>coronavirus<br>prophylaxis | BioNTech                     |
| Argentina                                                                                                                                                                                                                                                                                                                               | Ampligen                    | Rintatolimod                 | 2016 | Chronic fatigue<br>syndrome                                    | AIM ImmunoTech               |

In addition, there are 3579 gene, cell and RNA therapies are in the pipeline ranging from preclinical through pre-registration stages. Out of 3579 therapies, 1986 gene therapies that include genetically-modified cell therapies accounts for 55% whereas 816 non-genetically modified cell therapies accounts for 22% of gene,

cell and RNA therapies as shown in Figure 2.

Currently, RNA therapies that include RNAi, mRNA and antisense therapeutic products have clearly been dominated by preclinical development stage by 80%, 76% and 64% respectively as represented in Figure 3. RNA therapies are usually targeted for rare oncology diseases such as pancreatic, liver and ovarian cancer and in case of non-oncology rare diseases



it's mainly targeted for Duchenne's muscular dystrophy, amyotrophic lateral sclerosis, and Huntington's disease.



Figure 3: Preclinical v/s Clinical development percent of different RNA therapies (Source: Pharmaprojects / Informa, April 2022 (American Society of Gene + Cell Therapy))

## Challenges and Demand associated with conducting Clinical trials for cell, gene, and RNA therapies:

Manufacturing and delivery methods of therapeutic products related to cell and gene therapy are different from routine pharmaceutical or biopharmaceutical products. Hence, clinical trials of cell, gene, and RNA therapies does not follow the traditional path of clinical trials that has been conducted for small molecules or proteins. Therefore, CROs having expertise in conducting these specialized type of complex clinical trials is the need of the hour to expedite the entire process by including virtual site monitoring, eConsent etc.

Though there are certain difficulties in the path of cell and gene therapy clinical trials development but it is needed to convert those stumbling blocks into the stepping stone because of the tremendously significant outcome of cell, gene or RNA therapies in treating several cancer or genetic disorders which were earlier incurable.

## **References:**

- 1. Novotech the Asia Specific CRO website (<u>https://novotech-cro.com/faq/cell-gene-therapy-clinical-trials-global-landscape</u>)
- 2. Pharmaprojects | Informa, April 2022 (American Society of Gene + Cell Therapy)